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Identifying mental health status using deep neural
network trained by visual metrics
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Abstract
Mental health is an integral part of the quality of life of cancer patients. It has been found that mental health issues,
such as depression and anxiety, are more common in cancer patients. They may result in catastrophic consequences,
including suicide. Therefore, monitoring mental health metrics (such as hope, anxiety, and mental well-being) is
recommended. Currently, there is lack of objective method for mental health evaluation, and most of the available
methods are limited to subjective face-to-face discussions between the patient and psychotherapist. In this study we
introduced an objective method for mental health evaluation using a combination of convolutional neural network
and long short-term memory (CNN-LSTM) algorithms learned and validated by visual metrics time-series. Data were
recorded by the TobiiPro eyeglasses from 16 patients with cancer after major oncologic surgery and nine individuals
without cancer while viewing18 artworks in an in-house art gallery. Pre-study and post-study questionnaires of Herth
Hope Index (HHI; for evaluation of hope), anxiety State-Trait Anxiety Inventory for Adults (STAI; for evaluation of
anxiety) and Warwick-Edinburgh Mental Wellbeing Scale (WEMWBS; for evaluation of mental well-being) were
completed by participants. Clinical psychotherapy and statistical suggestions for cutoff scores were used to assign an
individual’s mental health metrics level during each session into low (class 0), intermediate (class 1), and high (class 2)
levels. Our proposed model was used to objectify evaluation and categorize HHI, STAI, and WEMWBS status of
individuals. Classification accuracy of the model was 93.81%, 94.76%, and 95.00% for HHI, STAI, and WEMWBS metrics,
respectively. The proposed model can be integrated into applications for home-based mental health monitoring to be
used by patients after oncologic surgery to identify patients at risk.

Introduction
Cancer significantly affects the quality of life of patients.

Psychologic evaluation and support of patients are key to
alleviate emotional distress, enhance coping, and improve
the ability of handling cancer diagnosis, subsequent
management, and overall prognosis1,2. It has been shown
that the extent of disease and physical impairment from
treatment is associated with the severity of mood dis-
orders among patients with lung cancer3. Moreover, the
frequency of intrusive thoughts in many patients with
cancer diagnosis, especially breast cancer survivors, is
primarily related to psychological distress4. One study

found that health metrics are associated with behavioral
and psychological changes, and reducing psychological
distress was crucial for better health2. Among patients
with pancreatic cancer, 71% had symptoms of depression
and 48% had anxiety-related disorders5. A strong asso-
ciation between suicidal ideation and depression in
patients with advanced cancer has been reported, and the
incidence of suicide in patients diagnosed with cancer is
approximately double the incidence in the general
population6,7.
Despite the general agreement about the importance of

psychological assessment and/or intervention for patients
with malignancy, there is lack of an objective method for
evaluation of the mental health of this patient cohort8.
Currently, mental health evaluation is performed by self-
reported, subjective, questionnaire-based evaluation that
may be time consuming and complicated9–12. One form
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included 65 items, and a shorter version was developed to
facilitate administration among patients on cancer
therapies that included 37 items9–11,13. Another utilized
self-reported Patient Health Questionnaire-9 (PHQ-9)
compound scores, based on typing patterns to detect
tendency towards depression14.
The development of an objective mental health eva-

luation method that automatically monitors mental health
metrics can improve and promote mental health evalua-
tion, streamline referrals to psychosocial services, and
improve patient care.
Some of the studies proposing objective methods for

mental health evaluation summarized in Table 1. How-
ever, the majority of these studies propose methods that
require feature engineering and also none of them takes
into account a clinically approved assessment method.
Eye movements are a function of brain activity and

extra-ocular muscle properties15. Motor function of the
eye is linked to the central nervous system, therefore,
disorders that affect the cerebral cortex, the brainstem, or
the cerebellum can disturb ocular motor function16–19.
Visual perception demands proper functioning of ocular
motor systems which control the position and movement
of eyes (to focus on corresponding areas of the retinas of
both eyes20), in addition to pupil size adjustment. Human
perception of the environment relies on the capacity of
brain neural networks (especially within the visual cortex)
to adapt to changes in stimuli21–24. Understanding the
rate of adaptation to stimuli by cortical networks is
essential to understand the relationship between sensory
coding and behavior21–24. Prior studies have confirmed a
strong association between ocular motor function and
cognitive and mental disorders, including Alzheimer,
Parkinson, Huntington and Wilson’s diseases17,25–30, in
addition to psychiatric disorders such as autism31,32,
attentional disorder18, antisocial personality disorder33,
and post-traumatic stress disorder34,35. This relationship
has been shown in experimental psychology and clinical
neuroscience. It has already been shown that inhibitory
saccades are impaired in Alzheimer’s disease, and is
attributed to neurodegeneration in the frontal and pre-
frontal lobes17,29,30. Prior studies have also shown that
after an unpleasant-stimulus, emotions were indexed by
eye-blink startle, and left-sided frontal EEG activation
occurred36. Visual metrics have also been proposed for
detection of human physiological changes including
mental fatigue37, cognition and cognitive development38,
mental workload evaluation39,40, stress level in students41,
threat-related emotional facial expressions in infancy42,
shared attention for virtual agent43, and emotional arousal
and autonomic activation44.
Deep learning is a set of training methods that allows

automatic processing of inputs without feature engineer-
ing via hierarchical layers24,25. Due to its superiority in Ta
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complex pattern recognition, deep learning has become
state of the art, and has achieved success in areas such as
strategic games26, speech recognition27, medical ima-
ging28, and health informatics29. However, data about
deep learning techniques for the evaluation of mental
health remains scarce.
Combination of CNN and LSTM techniques has been

frequently applied to physiological parameters for diag-
nosis, detection, and monitoring of health in several
medical applications45–47. The LSTM technique is a spe-
cial form of recurrent neural network (RNN)48. It is well-
suited for the classification of time-series signals49. On the
other hand, CNN technique is known for extracting the
significant features in data50.
In this study, we investigate the feasibility of using deep

learning and developing algorithm to utilize visual metrics
for objective evaluation of mental health.

Methods
Subjects
Sixteen patients who underwent an oncologic surgical

procedure at Roswell Park Comprehensive Cancer Center
and nine volunteers without cancer were included (I
43217, NCT03688945). Procedures included: gastro-
intestinal (46%: gastrectomy, HIPEC, colectomy, and
Whipple), urologic (35%: radical cystectomy, radical
nephrectomy, and parastomal hernia repair), thoracic

(13%: minimally invasive esophagostomy), and soft tissue
procedures (7%, amputation). Patients did not require
continuous monitoring and had no visual impairment.
Informed consent was obtained from all participants.

Experimental setup
All participants (n= 25) attended at least one session

for 15min at the dedicated in-house art gallery, developed
in collaboration with the Albright Knox Art Gallery.
Eighteen pieces of art were selected based on the sug-
gestions within the existing literature, by an expert panel
of art professionals from the Albright-Knox Art Gallery51–53.
All participants looked at each specific art for 50 s and
they look at 18 art works in the same order. Only time
portions that the subject is directly looking at each art-
work are included in the analyses.
Art selection was guided by the Albright-Knox’s

mission-philosophy of providing inspirational spaces that
support learning and inquiry. Art that rewards multiple or
prolonged viewing were selected in order to hold the
viewer’s attention. Compositions and content interpreted
as uplifting, positive or transcendent were also considered.
Selected artwork included three categories: abstract,

figurative, and landscape (Fig. 1). Based on Getty’s Art and
Architecture Thesaurus, abstract art referred to works
that were not clear representations of objectives from
reality and instead rely on shapes, colors, forms, and

Fig. 1 Art gallery layout and artwork. Gallery A includes ‘abstract’ art types. Gallery B includes ‘figuration’ art types, and gallery C includes
‘landscape’ art types.
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gestures to achieve their effects. Figurative featured
representation of a form or figure generally that of human
or animal and retained ties to the visible world. Landscape
art depicted outdoor scenes typically dominated by the
land, hills, fields, and other natural elements. The art
gallery was divided into three spaces; each corresponds to
the specific type of art included. Patients and participants
were blinded to the type of art.
TobiiPro2 eyeglasses were used to record eye move-

ment time-series metrics (sampling rate: 100 Hz) from
participants while they viewed the art in the gallery. The
recorded time series include 20 features of time, gaze
point X, gaze point Y, gaze point 3D X, gaze point 3D Y,
gaze point 3D Z, gaze direction left X, gaze direction left
Y, gaze direction left Z, gaze direction right X, gaze
direction right Y, gaze direction right Z, pupil position
left X, pupil position left Y, pupil position left Z, pupil
position left X, pupil position left Y, pupil position left Z,
pupil diameter left, and pupil diameter right. Total
recordings were 370, and the duration of each recording
was 15 min.

Participant-based evaluations
All participants completed three validated post-study

questionnaires assessing hope (HHI; Herth Hope Index),
anxiety (STAI; State-Trait Anxiety Inventory for Adults),
and mental wellbeing (WEMWBS; Warwick-Edinburgh
Mental Wellbeing Scale).
HHI (range 12–48) is a validated 12-item scale with 4

response categories evaluating the level of hope. Higher
HHI scores indicated higher hope level54. Scores were
categorized into class 0 (low) (12 < HHI < 36), class 1
(intermediate) (36 < HHI < 42), and class 2 (high) (42 <
HHI < 48) levels of hope55,56.
STAI (range 20–80) is a 20-item scale with four

response categories. Higher values indicate higher anxiety.
Based on psychotherapy literature, we considered 20 <
STAI < 44 as class 0 (normal), 44 < STAI < 54 as class 1
(risk of anxiety and suggests a mood disorder), and
54<STAI < 80 as class 2 (significant symptoms of
anxiety)57.
WEMWBS (range 14–70): it is 14-item scale with five

response categories covering functioning aspects of
mental well-being. Three categories were considered for
WEMWBS, class 0: 14 <WEMWBS < 42 (low), class 1:
42 <WEMWBS < 59 (intermediate), and class 2: 59 <
WEMWBS < 70 (high)58,59.

Visual data preprocessing
Tobii Pro eye glasses2 are an infrared video-based

remote eye-tracking system used to record visual time
series at 100 Hz. The moving average filter was applied to
gaze data for noise reduction, while the window size of
three points was considered.

Deep neural network
Our mental health metrics (HHI, STAI, WEMWBS)

evaluation method was formalized as a supervised three-
class classification problem. The Inputs to the model were
extracted by using multivariate visual time series. The
output of the model was the predicted labels representing
corresponding mental health metrics levels of individuals,
which can be encoded as class ‘0’, class ‘1’, class ‘2’. The
ground-truth mental health metrics were acquired from
participants’ subjective assessments and clinical cutoff
scores. The objective cost function for training the net-
work was defined as a categorical cross-entropy cost, to
train CNN-LSTM to output a probability over the three
classes for each input.

Network architecture
The architecture of our proposed deep neural network

consists of 1D convolution, dropout, maxpooling, flatten,
lstm, fully connected, and softmax (Table 2). The depth of
the network was chosen after trial-and-error from the
training/validation procedure.
The CNN-LSTM architecture, an LSTM architecture

specifically designed for sequence prediction problems,
involves using Convolutional Neural Network (CNN)
layers for feature extraction on input data combined with
LSTMs to support sequence prediction60. The CNN
LSTM model will read subsequences of the main
sequence (time series) in as blocks/wraps, extract features
from each block, then allow the LSTM to interpret the
features extracted from each block45.

Input
We used the aforementioned recorded visual metrics to

develop inputs to deep neural network architecture.
Visual metrics recorded from 16 patients and 9 volun-
teers without cancer were used to train the model and

Table 2 Deep neural network architecture.

Layers

Time_distributed, Conv1D, Filters: 64, kernel size: 3, activation: ‘ReLU’

Time_distributed, Conv1D, Filters: 64, kernel size: 3, activation: ‘ReLU’

Time_distributed, Dropout (0.5)

Time_distributed, MaxPooling1D (pool_size= 2)

Time_distributed (Flatten)

LSTM (100)

Dropout (0.5)

Dense, size: 100, activation= ’ReLU’

Dense, size: 3, activation: ‘softmax’
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tune deep neural network parameters. Data Augmenta-
tion: Limited size of the available dataset might cause
overfitting of the deep model61. To prevent happening
this problem, we applied data augmentation techniques
to time-series data to enlarge the size of the dataset and
increase classification accuracy62–64. Before inputting
data into our network, we carried out a label-preserving
cropping with a sliding window, where the motion sub-
sequences were extracted using a sliding window with a
fixed-size, within the trial. The annotation for each
window is identical to the class label of the original trial,
from which the sub-sequences are extracted. We con-
sidered a time window moving throughout 20 considered
visual time series to extract blocks. One approach to
implementing this model was to split each window of 51-
time points into subsequences for the CNN model to
process. The 51-time points in each window were split
into three subsequences of 17-time points by wrapper
layer. We then considered sequences with a length of 17-
time points and 20 features as input to the CNN-LSTM
algorithm.

Implementation
A Convolutional neural network-Long short-term

memory (CNN-LSTM) algorithm was implemented using
Keras library with Tensorflow backend based on Python
3.6. During the optimization, our network was trained by
minimizing the categorical cross-entropy cost between
the predicted and ground-truth labels. To train the net
efficiently, we run mini-batch with the size of 64 to update
gradient descent, which calculated network parameters on
a subset of the training data at each iteration65. For
training, totally 250 epochs were run, and the network
parameters were optimized by Adam optimizer66, and
parameters of learning rate= 0.0001, beta1= 0.9, beta2=
0.999, epsilon= 1 × 10−8. Overview of the developed
model is represented in Fig. 2. Networks with the same
architecture are trained to evaluate HHI, STAI, and
WEMWBS metrics.
To validate the model classification, we used leave-one-

supertrial-out (LOSO) cross-validation schemes in this
work. This process is repeated in five fold where each fold
consists of each one of the five supertrials. The average of
all five-fold performance measures in each test set is
reported and gives classification results.

Results
We evaluate the proposed deep learning approach for

self-proclaimed mental health status classification. The
confusion matrices of classification results are obtained
from the testing set under the five-fold LOSO cross-
validation scheme. Figures 3–5 show the results of three-
class self-proclaimed mental health status classification.

Hope evaluation
The F1-score: 93.81%, and accuracy: 93.81% for HHI

level classification. Confusion matrix for HHI level clas-
sification is shown in Fig. 3.

STAI evaluation
The F1-score: 94.77% and accuracy: 94.76% (confusion

matrix shown in Fig. 4).

WEMWBS evaluation
The F1-score: 95% and accuracy: 95% (confusion matrix

shown in Fig. 5).

Discussion
In this study we used visual metrics as source of input to

CNN-LSTM model to objectify the evaluation of mental
health status metrics (HHI, STAI, and WEMWBS), con-
sidering participant-based responses for validated ques-
tionnaires. Results showed promising accuracy 93.81%,
94.76%, and 95.00% for HHI, STAI, and WEMWBS,
respectively. Our primary goal was to introduce and
evaluate the applicability of a deep learning-based
approach for objective evaluation of mental health in
patients after major oncologic surgery.
We developed an end-to-end algorithm and integrated

temporal dynamics on rich representations of visual time
series, while simultaneously classifying mental health.
LSTM has the characteristic of resolving the problem of
vanishing gradients, which is a problem of RNNs48. LSTM
introduces the concept of a memory unit. They can decide
when to forget and when to remember hidden states for
future time steps. Hence, LSTMs are able to train models
on long term dependencies49. Characteristics of CNN and
LSTM algorithms make their combination suitable for
mental health evaluation using visual metrics time series.
We recorded visual metrics in an acceptable and patient-
friendly approach that would pose minimal or no addi-
tional burden or discomfort for patients after surgery.
Most studies for mental health evaluation rely on sub-
jective evaluations in combination with physiological
parameters. The proposed evaluation method is end-to-
end and does not require features engineering and pre-
processing. The developed model may be used for formal
evaluation or assessment at home to objectively monitor
patient’s mental health without the need for a hospital
visit in the future.
Despite the uniqueness of this study, several limitations

exist. Subjective mental health metrics evaluations were
based on scores given at the end of each session (obser-
ving 18 art pieces). The effect on mental health because of
a particular artwork was not considered. The small
number of participants is another limitation. The devel-
oped model lacks rigorous testing and evaluation for
medical application. However, we believe it has the
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Fig. 2 Overview of developed model for objective evaluation of mental health status. Three different networks with the same architecture are
trained to evaluate HHI, STAI, and WEMWBS metrics. The HHI, STAI, and WEMWBS are metrics used for subjective evaluation of hope, stress/anxiety,
and mental well-being, respectively. Blocked data through visual metrics time series were used as input to the CNN-LSTM model. In this study, sliding
window length ‘L’ is 51 and 20 visual metrics are considered as dimension of input to the network. The output of the model is level of mental well-
being (evaluated by WEMWBS metric), anxiety/stress (evaluated by STAI metric and hope (evaluated by HHI metric) based on three categories of low
(class label: 0), intermediate (class label: 1), and high (class label: 2) categories.

Fig. 3 Normalized confusion matrix for HHI evaluation utilizing
visual metrics and CNN-LSTM algorithm. Element value (m, n) of
this matrix, and color, represent the probability of predicted HHI level
n, given the ground-truth HHI level m, where m and n have labels of 0
(low), 1(intermediate/controllable), and 2 (high). The diagonal
elements of this matrix correspond to correct predictions.

Fig. 4 Normalized confusion matrix for STAI evaluation utilizing
visual metrics and CNN-LSTM algorithm. Element value (m, n) of
this matrix, and color, represent the probability of predicted STAI level
n, given the ground-truth STAI level m, where m and n have labels of
0 (low), 1(intermediate/controllable), and 2 (high). The diagonal
elements of this matrix correspond to correct predictions.
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potential to monitor mental health in patients after
oncologic surgery in an objective fashion, with minimal
discomfort to patients.

Conclusion
A novel data-driven deep architecture model for the

objective classification of mental health metrics was
developed. This model, once validated, will serve as a real-
time, patient-friendly model of mental health assessment.
Future work would include further validation of the
model for objective and remote monitoring of mental
health, as well as investigating the effect of the specific
surgery type or artwork viewed.
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